Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biosci Rep ; 41(9)2021 09 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1915305

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic of the Coronavirus disease in late 2019 (COVID-19). Vaccine development efforts have predominantly been aimed at 'Extra-viral' Spike (S) protein as vaccine vehicles, but there are concerns regarding 'viral immune escape' since multiple mutations may enable the mutated virus strains to escape from immunity against S protein. The 'Intra-viral' Nucleocapsid (N-protein) is relatively conserved among mutant strains of coronaviruses during spread and evolution. Herein, we demonstrate novel vaccine candidates against SARS-CoV-2 by using the whole conserved N-protein or its fragment/peptides. Using ELISA assay, we showed that high titers of specific anti-N antibodies (IgG, IgG1, IgG2a, IgM) were maintained for a reasonably long duration (> 5 months), suggesting that N-protein is an excellent immunogen to stimulate host immune system and robust B-cell activation. We synthesized three peptides located at the conserved regions of N-protein among CoVs. One peptide showed as a good immunogen for vaccination as well. Cytokine arrays on post-vaccination mouse sera showed progressive up-regulation of various cytokines such as IFN-γ and CCL5, suggesting that TH1 associated responses are also stimulated. Furthermore, vaccinated mice exhibited an elevated memory T cells population. Here, we propose an unconventional vaccine strategy targeting the conserved N-protein as an alternative vaccine target for coronaviruses. Moreover, we generated a mouse monoclonal antibody specifically against an epitope shared between SARS-CoV and SARS-CoV-2, and we are currently developing the First-in-Class humanized anti-N-protein antibody to potentially treat patients infected by various CoVs in the future.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Proteínas de la Nucleocápside de Coronavirus/inmunología , Animales , Anticuerpos Monoclonales de Origen Murino , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Proteínas de la Nucleocápside de Coronavirus/genética , Epítopos/inmunología , Humanos , Evasión Inmune , Inmunogenicidad Vacunal , Ratones , Modelos Animales , Pandemias/prevención & control , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Homología de Secuencia de Aminoácido , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología
2.
ACS Appl Bio Mater ; 5(3): 905-944, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1705996

RESUMEN

This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.


Asunto(s)
Desarrollo de Vacunas , Vacunas de Subunidad/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Antígenos/inmunología , Vacunas contra el Cáncer/administración & dosificación , Control de Enfermedades Transmisibles , Humanos , Neoplasias/terapia , Péptidos/inmunología
3.
Front Immunol ; 12: 781280, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1608387

RESUMEN

The development of more effective, accessible, and easy to administer COVID-19 vaccines next to the currently marketed mRNA, viral vector, and whole inactivated virus vaccines is essential to curtailing the SARS-CoV-2 pandemic. A major concern is reduced vaccine-induced immune protection to emerging variants, and therefore booster vaccinations to broaden and strengthen the immune response might be required. Currently, all registered COVID-19 vaccines and the majority of COVID-19 vaccines in development are intramuscularly administered, targeting the induction of systemic immunity. Intranasal vaccines have the capacity to induce local mucosal immunity as well, thereby targeting the primary route of viral entry of SARS-CoV-2 with the potential of blocking transmission. Furthermore, intranasal vaccines offer greater practicality in terms of cost and ease of administration. Currently, only eight out of 112 vaccines in clinical development are administered intranasally. We developed an intranasal COVID-19 subunit vaccine, based on a recombinant, six-proline-stabilized, D614G spike protein (mC-Spike) of SARS-CoV-2 linked via the LPS-binding peptide sequence mCramp (mC) to outer membrane vesicles (OMVs) from Neisseria meningitidis. The spike protein was produced in CHO cells, and after linking to the OMVs, the OMV-mC-Spike vaccine was administered to mice and Syrian hamsters via intranasal or intramuscular prime-boost vaccinations. In all animals that received OMV-mC-Spike, serum-neutralizing antibodies were induced upon vaccination. Importantly, high levels of spike-binding immunoglobulin G (IgG) and A (IgA) antibodies in the nose and lungs were only detected in intranasally vaccinated animals, whereas intramuscular vaccination only induced an IgG response in the serum. Two weeks after their second vaccination, hamsters challenged with SARS-CoV-2 were protected from weight loss and viral replication in the lungs compared to the control groups vaccinated with OMV or spike alone. Histopathology showed no lesions in lungs 7 days after challenge in OMV-mC-Spike-vaccinated hamsters, whereas the control groups did show pathological lesions in the lung. The OMV-mC-Spike candidate vaccine data are very promising and support further development of this novel non-replicating, needle-free, subunit vaccine concept for clinical testing.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunidad Mucosa/inmunología , SARS-CoV-2/inmunología , Administración Intranasal , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vesículas Citoplasmáticas/inmunología , Femenino , Humanos , Inmunoglobulina A/inmunología , Mesocricetus , Ratones Endogámicos BALB C , Neisseria meningitidis/inmunología , Pandemias/prevención & control , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunación/métodos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
4.
Nature ; 601(7894): 617-622, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1528018

RESUMEN

T cell immunity is central for the control of viral infections. CoVac-1 is a peptide-based vaccine candidate, composed of SARS-CoV-2 T cell epitopes derived from various viral proteins1,2, combined with the Toll-like receptor 1/2 agonist XS15 emulsified in Montanide ISA51 VG, aiming to induce profound SARS-CoV-2 T cell immunity to combat COVID-19. Here we conducted a phase I open-label trial, recruiting 36 participants aged 18-80 years, who received a single subcutaneous CoVac-1 vaccination. The primary end point was safety analysed until day 56. Immunogenicity in terms of CoVac-1-induced T cell response was analysed as the main secondary end point until day 28 and in the follow-up until month 3. No serious adverse events and no grade 4 adverse events were observed. Expected local granuloma formation was observed in all study participants, whereas systemic reactogenicity was absent or mild. SARS-CoV-2-specific T cell responses targeting multiple vaccine peptides were induced in all study participants, mediated by multifunctional T helper 1 CD4+ and CD8+ T cells. CoVac-1-induced IFNγ T cell responses persisted in the follow-up analyses and surpassed those detected after SARS-CoV-2 infection as well as after vaccination with approved vaccines. Furthermore, vaccine-induced T cell responses were unaffected by current SARS-CoV-2 variants of concern. Together, CoVac-1 showed a favourable safety profile and induced broad, potent and variant of concern-independent T cell responses, supporting the presently ongoing evaluation in a phase II trial for patients with B cell or antibody deficiency.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Vacunas de Subunidad/inmunología , Administración Cutánea , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos T CD8-positivos/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Ensayos Clínicos Fase II como Asunto , Femenino , Granuloma/inmunología , Humanos , Inmunogenicidad Vacunal , Interferón gamma/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/efectos adversos , Adulto Joven
5.
Front Immunol ; 12: 732298, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1506693

RESUMEN

Immune modulating therapies and vaccines are in high demand, not least to the recent global spread of SARS-CoV2. To achieve efficient activation of the immune system, professional antigen presenting cells have proven to be key coordinators of such responses. Especially targeted approaches, actively directing antigens to specialized dendritic cells, promise to be more effective and accompanied by reduced payload due to less off-target effects. Although antibody and glycan-based targeting of receptors on dendritic cells have been employed, these are often expensive and time-consuming to manufacture or lack sufficient specificity. Thus, we applied a small-molecule ligand that specifically binds Langerin, a hallmark receptor on Langerhans cells, conjugated to a model protein antigen. Via microneedle injection, this construct was intradermally administered into intact human skin explants, selectively loading Langerhans cells in the epidermis. The ligand-mediated cellular uptake outpaces protein degradation resulting in intact antigen delivery. Due to the pivotal role of Langerhans cells in induction of immune responses, this approach of antigen-targeting of tissue-resident immune cells offers a novel way to deliver highly effective vaccines with minimally invasive administration.


Asunto(s)
Antígenos CD/metabolismo , Antígenos/administración & dosificación , Proteínas Fluorescentes Verdes/administración & dosificación , Células de Langerhans/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Animales , Antígenos/inmunología , Antígenos/metabolismo , Células COS , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Inyecciones Intradérmicas , Células de Langerhans/inmunología , Ligandos , Miniaturización , Nanomedicina , Agujas , Unión Proteica , Transporte de Proteínas , Proteolisis , Células THP-1 , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/metabolismo
6.
Viruses ; 13(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1502527

RESUMEN

The COVID-19 pandemic has currently created an unprecedented threat to human society and global health. A rapid mass vaccination to create herd immunity against SARS-CoV-2 is a crucial measure to ease the spread of this disease. Here, we investigated the immunogenicity of a SARS-CoV-2 subunit vaccine candidate, a SARS-CoV-2 spike glycoprotein encapsulated in N,N,N-trimethyl chitosan particles or S-TMC NPs. Upon intraperitoneal immunization, S-TMC NP-immunized mice elicited a stronger systemic antibody response, with neutralizing capacity against SARS-CoV-2, than mice receiving the soluble form of S-glycoprotein. S-TMC NPs were able to stimulate the circulating IgG and IgA as found in SARS-CoV-2-infected patients. In addition, spike-specific T cell responses were drastically activated in S-TMC NP-immunized mice. Surprisingly, administration of S-TMC NPs via the intraperitoneal route also stimulated SARS-CoV-2-specific immune responses in the respiratory tract, which were demonstrated by the presence of high levels of SARS-CoV-2-specific IgG and IgA in the lung homogenates and bronchoalveolar lavages of the immunized mice. We found that peritoneal immunization with spike nanospheres stimulates both systemic and respiratory mucosal immunity.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , Inmunidad , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , COVID-19/prevención & control , Femenino , Humanos , Inmunidad Mucosa , Inmunización/métodos , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Sistema de Administración de Fármacos con Nanopartículas/uso terapéutico , Nanopartículas/uso terapéutico , Proteínas Recombinantes/inmunología , Sistema Respiratorio/inmunología , Linfocitos T/inmunología , Vacunación , Vacunas de Subunidad/administración & dosificación
7.
Viruses ; 13(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1481007

RESUMEN

Nipah virus (NiV) and respiratory syncytial virus (RSV) possess two surface glycoproteins involved in cellular attachment and membrane fusion, both of which are potential targets for vaccines. The majority of vaccine development is focused on the attachment (G) protein of NiV, which is the immunodominant target. In contrast, the fusion (F) protein of RSV is the main target in vaccine development. Despite this, neutralising epitopes have been described in NiV F and RSV G, making them alternate targets for vaccine design. Through rational design, we have developed a vaccine strategy applicable to phylogenetically divergent NiV and RSV that comprises both the F and G proteins (FxG). In a mouse immunization model, we found that NiV FxG elicited an improved immune response capable of neutralising pseudotyped NiV and a NiV mutant that is able to escape neutralisation by two known F-specific antibodies. RSV FxG elicited an immune response against both F and G and was able to neutralise RSV; however, this was inferior to the immune response of F alone. Despite this, RSV FxG elicited a response against a known protective epitope within G that is conserved across RSV A and B subgroups, which may provide additional protection in vivo. We conclude that inclusion of F and G antigens within a single design provides a streamlined subunit vaccine strategy against both emerging and established pathogens, with the potential for broader protection against NiV.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Henipavirus/prevención & control , Virus Nipah/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Desarrollo de Vacunas/métodos , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/genética , Proteínas Virales de Fusión/inmunología
9.
Adv Sci (Weinh) ; 8(16): e2100985, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1281196

RESUMEN

COVID-19 is disastrous to global health and the economy. SARS-CoV-2 infection exhibits similar clinical symptoms and immunopathological sequelae to SARS-CoV infection. Therefore, much of the developmental progress on SARS-CoV vaccines can be utilized for the development of SARS-CoV-2 vaccines. Careful antigen selection during development is always of utmost importance for the production of effective vaccines that do not compromise recipient safety. This holds especially true for SARS-CoV vaccines, as several immunopathological disorders are associated with the activity of structural and nonstructural proteins encoded in the virus's genetic material. Whole viral protein and RNA-encoding full-length proteins contain both protective and "dangerous" sequences, unless pathological fragments are deleted. In light of recent advances, peptide vaccines may present a very safe and effective alternative. Peptide vaccines can avoid immunopathological pro-inflammatory sequences, focus immune responses on neutralizing immunogenic epitopes, avoid off-target antigen loss, combine antigens with different protective roles or mechanisms, even from different viral proteins, and avoid mutant escape by employing highly conserved cryptic epitopes. In this review, an attempt is made to exploit the similarities between SARS-CoV and SARS-CoV-2 in vaccine antigen screening, with particular attention to the pathological and immunogenic properties of SARS proteins.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas Virales/inmunología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas Virales/administración & dosificación
10.
Front Immunol ; 12: 641447, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1264330

RESUMEN

The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/administración & dosificación , Inmunidad Humoral/efectos de los fármacos , Inmunogenicidad Vacunal , Fragmentos de Péptidos/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Células TH1/efectos de los fármacos , Adyuvantes Inmunológicos/administración & dosificación , Animales , Biomarcadores/sangre , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Estabilidad de Medicamentos , Glicosilación , Células HEK293 , Humanos , Inmunización , Interferón gamma/sangre , Masculino , Ratones Endogámicos C57BL , Fragmentos de Péptidos/inmunología , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Células TH1/metabolismo , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Células Vero
11.
Curr Opin Virol ; 49: 52-57, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1213121

RESUMEN

SARS-CoV-2 has been detected in more than 141 million people and caused more than 3 million deaths worldwide. To reduce the additional loss of millions of lives until natural immunity is reached, researchers have focused on the only known method to stop the COVID-19 pandemic: vaccines. The pandemic has propelled high-speed vaccine development, some based on novel technology previously not utilized in the vaccine field. The new technology opens new possibilities and comes with challenges because the long-term performance of the new platforms is unknown. Here we review the current leading vaccine candidates against COVID-19 and outline the advantages and disadvantages as well as the unknowns of each candidate.


Asunto(s)
Investigación Biomédica , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Adenoviridae/genética , Investigación Biomédica/estadística & datos numéricos , Investigación Biomédica/tendencias , COVID-19/epidemiología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/genética , Humanos , Mutación , SARS-CoV-2/genética , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/genética , Vacunas de Productos Inactivados/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
12.
Emerg Microbes Infect ; 10(1): 629-637, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1124369

RESUMEN

COVID-19 vaccines emerging from different platforms differ in efficacy, duration of protection, and side effects. To maximize the benefits of vaccination, we explored the utility of employing a heterologous prime-boost strategy in which different combinations of the four types of leading COVID-19 vaccine candidates that are undergoing clinical trials in China were tested in a mouse model. Our results showed that sequential immunization with adenovirus vectored vaccine followed by inactivated/recombinant subunit/mRNA vaccine administration specifically increased levels of neutralizing antibodies and promoted the modulation of antibody responses to predominantly neutralizing antibodies. Moreover, a heterologous prime-boost regimen with an adenovirus vector vaccine also improved Th1-biased T cell responses. Our results provide new ideas for the development and application of COVID-19 vaccines to control the SARS-CoV-2 pandemic.


Asunto(s)
Vacunas contra el Adenovirus/inmunología , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Inmunización Secundaria/métodos , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/inmunología , Vacunas contra el Adenovirus/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Interferón gamma/sangre , Recuento de Linfocitos , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación/efectos adversos , Vacunas de Subunidad/administración & dosificación , Vacunas Sintéticas/administración & dosificación
13.
Vaccine ; 39(16): 2280-2287, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1118711

RESUMEN

The emergence of the global Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic underscores the importance of the rapid development of a non-invasive vaccine that can be easily administered. A vaccine administered by nasal delivery is endowed with such characteristics against respiratory viruses. In this study, we generated a recombinant SARS-CoV-2 receptor-binding domain (RBD)-based subunit vaccine. Mice were immunized via intranasal inoculation, microneedle-intradermal injection, or intramuscular injection, after which the RBD-specific immune responses were compared. Results showed that when administrated intranasally, the vaccine elicited a robust systemic humoral immunity with high titers of IgG antibodies and neutralizing antibodies as well as a significant mucosal immunity. Besides, antigen-specific T cell responses were also analyzed. These results indicated that the non-invasive intranasal administration should be explored for the future SARS-CoV-2 vaccine design.


Asunto(s)
Administración Intranasal , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Animales , Anticuerpos Neutralizantes/sangre , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Vacunas de Subunidad/administración & dosificación , Vacunas Sintéticas/administración & dosificación
14.
Nat Commun ; 12(1): 372, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1033459

RESUMEN

The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) from the full-length spike (S) protein that is stable in the prefusion conformation. NVX-CoV2373 S form 27.2-nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicit high titer anti-S IgG that blocks hACE2 receptor binding, neutralize virus, and protects against SARS-CoV-2 challenge with no evidence of vaccine-associated enhanced respiratory disease. NVX-CoV2373 also elicits multifunctional CD4+ and CD8+ T cells, CD4+ follicular helper T cells (Tfh), and antigen-specific germinal center (GC) B cells in the spleen. In baboons, low-dose levels of NVX-CoV2373 with Matrix-M was also highly immunogenic and elicited high titer anti-S antibodies and functional antibodies that block S-protein binding to hACE2 and neutralize virus infection and antigen-specific T cells. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2373 with Matrix-M (NCT04368988).


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Papio , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología
15.
Hum Vaccin Immunother ; 16(12): 2944-2953, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: covidwho-969292

RESUMEN

There is an urgent need for a safe, efficacious, and cost-effective vaccine for the coronavirus disease 2019 (COVID-19) pandemic caused by novel coronavirus strain, severe acute respiratory syndrome-2 (SARS-CoV-2). The protective immunity of certain types of vaccines can be enhanced by the addition of adjuvants. Many diverse classes of compounds have been identified as adjuvants, including mineral salts, microbial products, emulsions, saponins, cytokines, polymers, microparticles, and liposomes. Several saponins have been shown to stimulate both the Th1-type immune response and the production of cytotoxic T lymphocytes against endogenous antigens, making them very useful for subunit vaccines, especially those for intracellular pathogens. In this review, we discuss the structural characteristics, mechanisms of action, structure-activity relationship of saponins, biological activities, and use of saponins in various viral vaccines and their applicability to a SARS-CoV-2 vaccine.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Saponinas/administración & dosificación , Adyuvantes Inmunológicos/química , Animales , COVID-19/inmunología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología , Humanos , Saponinas/química , Saponinas/inmunología , Relación Estructura-Actividad , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
16.
Cell Syst ; 12(1): 102-107.e4, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: covidwho-947149

RESUMEN

Subunit vaccines induce immunity to a pathogen by presenting a component of the pathogen and thus inherently limit the representation of pathogen peptides for cellular immunity-based memory. We find that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit peptides may not be robustly displayed by the major histocompatibility complex (MHC) molecules in certain individuals. We introduce an augmentation strategy for subunit vaccines that adds a small number of SARS-CoV-2 peptides to a vaccine to improve the population coverage of pathogen peptide display. Our population coverage estimates integrate clinical data on peptide immunogenicity in convalescent COVID-19 patients and machine learning predictions. We evaluate the population coverage of 9 different subunits of SARS-CoV-2, including 5 functional domains and 4 full proteins, and augment each of them to fill a predicted coverage gap.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Inmunidad Celular/inmunología , Aprendizaje Automático , Vacunas de Subunidad/inmunología , Vacunas contra la COVID-19/administración & dosificación , Predicción , Humanos , Inmunidad Celular/efectos de los fármacos , Vacunas de Subunidad/administración & dosificación
17.
Methods Mol Biol ; 2225: 25-38, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-893254

RESUMEN

Various systems exist for the robust production of recombinant proteins. However, only a few systems are optimal for human vaccine protein production. Plant-based transient protein expression systems offer an advantageous alternative to costly mammalian cell culture-based systems and can perform posttranslational modifications due to the presence of an endomembrane system that is largely similar to that of the animal cell. Technological advances in expression vectors for transient expression in the last two decades have produced new plant expression systems with the flexibility and speed that cannot be matched by those based on mammalian or insect cell culture. The rapid and high-level protein production capability of transient expression systems makes them the optimal system to quickly and versatilely develop and produce vaccines against viruses such as 2019-nCoV that have sudden and unpredictable outbreaks. Here, expression of antiviral subunit vaccines in Nicotiana benthamiana plants via transient expression is demonstrated.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Plantas/inmunología , Neumonía Viral/prevención & control , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/biosíntesis , Betacoronavirus/inmunología , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Vectores Genéticos , Humanos , Plantas/genética , Neumonía Viral/inmunología , Neumonía Viral/transmisión , Neumonía Viral/virología , SARS-CoV-2
18.
ACS Nano ; 14(10): 12370-12389, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: covidwho-811625

RESUMEN

Despite the vital role of vaccines in fighting viral pathogens, effective vaccines are still unavailable for many infectious diseases. The importance of vaccines cannot be overstated during the outbreak of a pandemic, such as the coronavirus disease 2019 (COVID-19) pandemic. The understanding of genomics, structural biology, and innate/adaptive immunity have expanded the toolkits available for current vaccine development. However, sudden outbreaks and the requirement of population-level immunization still pose great challenges in today's vaccine designs. Well-established vaccine development protocols from previous experiences are in place to guide the pipelines of vaccine development for emerging viral diseases. Nevertheless, vaccine development may follow different paradigms during a pandemic. For example, multiple vaccine candidates must be pushed into clinical trials simultaneously, and manufacturing capability must be scaled up in early stages. Factors from essential features of safety, efficacy, manufacturing, and distributions to administration approaches are taken into consideration based on advances in materials science and engineering technologies. In this review, we present recent advances in vaccine development by focusing on vaccine discovery, formulation, and delivery devices enabled by alternative administration approaches. We hope to shed light on developing better solutions for faster and better vaccine development strategies through the use of biomaterials, biomolecular engineering, nanotechnology, and microfabrication techniques.


Asunto(s)
Vacunas Virales/inmunología , Vacunas contra la COVID-19 , Ensayos Clínicos como Asunto , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Humanos , Inmunogenicidad Vacunal , Potencia de la Vacuna , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos
19.
Chem Commun (Camb) ; 56(61): 8683-8686, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: covidwho-622770
20.
Int J Biol Macromol ; 158: 159-179, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: covidwho-141701

RESUMEN

Human malaria is a pathogenic disease mainly caused by Plasmodium falciparum, which was responsible for about 405,000 deaths globally in the year 2018. To date, several vaccine candidates have been evaluated for prevention, which failed to produce optimal output at various preclinical/clinical stages. This study is based on designing of polypeptide vaccines (PVs) against human malaria that cover almost all stages of life-cycle of Plasmodium and for the same 5 genome derived predicted antigenic proteins (GDPAP) have been used. For the development of a multi-immune inducer, 15 PVs were initially designed using T-cell epitope ensemble, which covered >99% human population as well as linear B-cell epitopes with or without adjuvants. The immune simulation of PVs showed higher levels of T-cell and B-cell activities compared to positive and negative vaccine controls. Furthermore, in silico cloning of PVs and codon optimization followed by enhanced expression within Lactococcus lactis host system was also explored. Although, the study has sound theoretical and in silico findings, the in vitro/in vivo evaluation seems imperative to warrant the immunogenicity and safety of PVs towards management of P. falciparum infection in the future.


Asunto(s)
Epítopos/química , Vacunas contra la Malaria/química , Simulación del Acoplamiento Molecular , Plasmodium falciparum/inmunología , Administración Oral , Afinidad de Anticuerpos , Sitios de Unión de Anticuerpos , Epítopos/inmunología , Humanos , Inmunogenicidad Vacunal , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA